The Hybrid Future OF Aerospace

The Hybrid Future OF Aerospace

When it comes to environmental impacts, the global aviation industry accounts for a mere 2% of greenhouse gas emissions. Nevertheless, there is a growing environmental concern. Since 1990, the industry has witnessed an 83% rise in emission levels. The primary reason for this has been the increasing number of fossil fuel-powered aircraft taking to the skies. Gaseous emissions, however, cannot be singled out as the sole environmental impact. Water vapor emissions at high altitudes brings about a phenomenon called contrails. These residual plumes of exhaust contribute to the global warming effect by trapping heat emanating from the Earth’s surface.

While the adverse effects on the environment and stringent environmental regulatory standards are a major motive, they are not the only prompts for shifting toward greener power-and-propulsion systems. A move toward electric/hybrid propulsion systems can translate to a business edge for companies investing in them. One of the most decisive advantages of electric motors is that they are lighter and cheaper than their gas turbine counterparts.

The lighter weight of the electric motors opens up a world of possibilities for design. This particular advantage of the electric motor allows them to be easily incorporated into new designs as well as existing electric-compatible designs. An example of this which is poised to majorly affect urban air mobility solutions is the usage of electromagnetic power on the next generation of tilt-wing vertical take-off and landing (VTOL) aircraft. The flexibility of electric cables grant them an obvious compatibility advantage with wing orientation over rigid fuel lines.

We have steadily begun flying in the right direction. The promise of a cleaner flight over new and exciting frontiers has been appealing to companies all over the world. One example that has come to the fore is that of Zunum Aero. The Seattle-based aerospace company plans to commercially deploy electric planes. The aircraft under development is estimated to have a cruise speed of 545 kilometers per hour with a flight range of over 1,100 kilometers. The revolutionary design of the aircraft features a V-shaped tail and fully electric propulsion gear powering twin engines.

The Global Aerospace industry continues to grow at a rapid pace to meet airline requirements. The industry faces growing pressure to reduce costs, improve Maintain, Repair, and Overhaul (MRO) value chain to increase the overall efficiency and reliability of the asset. L&T Technology services’ decades of experience in Aerospace has enabled us to adapt quickly to provide a wide range of tailored engineering services.


Source by Sammy Khanna



Call Now Button